Mo $^{\text {IV }}$ Chloromethylidyne Complexes: Structure of Dicarbonyl(chloromethylidyne)-[hydrotris(3,4,5-trimethyl-1-pyrazolyl)borato]molybdenum(IV)

By Timothy J. Desmond and Fergus J. Lalor*
Department of Chemistry, University College, Cork, Ireland
and George Ferguson, \dagger Masood Parvez and Tadeuz Wieckowski
Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1

(Received 14 March 1989; accepted 3 May 1989)

Abstract

Mo}(\mathrm{CCl})\left\{\mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{2}\right)_{3} \mathrm{H}\right\}(\mathrm{CO})_{2}\right], \quad M_{r}=\) 538.7, orthorhombic, $P b n 2_{1}, \quad a=9.179$ (2), $\quad b=$ 15.899 (3), $c=17.778$ (2) $\AA, V=2595$ (1) $\AA^{3}, Z=4$, $D_{x}=1.38 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \quad \mu=$ $6.2 \mathrm{~cm}^{-1}, F(000)=1104, T=291 \mathrm{~K}, R=0.028$ for 2101 reflections with $I>3 \sigma(I)$. The Mo atom has octahedral coordination, with principal dimensions Mo-C(chloromethylidyne) $\quad 1.798$ (5), $\quad \mathrm{C}-\mathrm{Cl}$ 1.680 (6), Mo-C(carbonyl) 1.982 (6), 1.974 (6), Mo-N(trans to chloromethylidyne ligand) 2.268 (4), Mo-N(trans to CO) 2.224 (5), 2.234 (4) \AA, $\mathrm{Mo}-\mathrm{C}-\mathrm{Cl} 165 \cdot 7$ (4) ${ }^{\circ}$.

Introduction. We have described earlier (Desmond, Lalor, Ferguson \& Parvez, 1983) a synthetic route to complexes containing the previously unknown and synthetically useful halomethylidyne (halocarbyne) ligands. Our crystal structure analysis of a representative example, dicarbonyl(chloromethyl-idyne)[tetrakis(1-pyrazolyl)borato]molybdenum(IV), $\left[\mathrm{Mo}(\mathrm{CCl})\left\{\mathrm{B}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)_{4}\right\}(\mathrm{CO})_{2}\right]$
$\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2} \equiv\right.$ 1-pyrazolyl), (I), revealed an Mo-C(methylidyne) bond length [mean 1.894 (10) \AA for three crystallographically independent molecules] which was anomalously long when compared with related complexes containing formal Group $6 b$ metal-tocarbon triple bonds, e.g. $1.801(4) \AA$ in $\left[\mathrm{Mo}\left(\mathrm{CSC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-p\right)\left\{\mathrm{HB}\left(3,5-\mathrm{Me}_{2} \mathrm{C}_{3} \mathrm{HN}_{2}\right)_{3}\right\}(\mathrm{CO})_{2}\right]$ (3,5-Me $\mathrm{C}_{3} \mathrm{HN}_{2} \equiv 3,5$-dimethyl-1-pyrazolyl), (II) (Desmond, Lalor, Ferguson \& Parvez, 1984) and $1.807 \AA$ in $\left.\left[\mathrm{WCSC}_{6} \mathrm{H}_{5}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right] \quad$ (III) (Greaves, Angelici, Helland, Klima \& Jacobson, 1979). The title complex (IV) was prepared and structurally characterized to obtain further information on the metal-carbon separation characteristic of complexed halomethylidyne ligands.

Experimental. Complex (IV) was prepared in 63% yield by oxidizing $\left[\mathrm{Et}_{4} \mathrm{~N}\right]\left[\mathrm{Mo}\left\{\mathrm{HB}\left(3,4,5-\mathrm{Me}_{3} \mathrm{C}_{3} \mathrm{~N}_{2}\right)_{3}\right\}\right.$ -

[^0]0108-2701/90/010059-03\$03.00
(CO) ${ }_{3}$] (3,4,5-Me $\mathrm{Ce}_{3} \mathrm{~N}_{2} \equiv 3,4,5$-trimethyl-1-pyrazolyl) with $\left(p-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right) \mathrm{BF}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Desmond, Lalor, Ferguson \& Parvez, 1983). Slow cooling of a concentrated solution of (IV) in hot acetonitrile gave yellow crystals suitable for crystallographic analysis.

Accurate cell dimensions and crystal orientation matrix were determined on a CAD-4 diffractometer by a least-squares treatment of the setting angles of 25 reflections in the range $10<\theta<15^{\circ}$. Crystal dimensions $0.30 \times 0.35 \times 0.40 \mathrm{~mm}$; intensities of reflections with $2<2 \theta<54^{\circ}$ measured; $h 0-11$, $k 0-20, l 0-22 ; \omega-2 \theta$ scans; ω scan width ($0.60+$ $0.35 \tan \theta)^{\circ}, \quad$ graphite-monochromatized Mo K α radiation. Intensities of three reflections were measured every 2 h and showed no evidence of crystal decay. 2913 unique reflections were measured and 2096 with $I>3 \sigma(I)$ were labelled observed and used in structure solution and refinement. Data were corrected for Lorentz, polarization and absorption effects (max. and min. transmission factors 0.856 , 0.802 ; Gaussian integration, grid $8 \times 10 \times 10$). The systematic absences ($h 0 l, h+l=2 n+1 ; 0 k l, k=2 n$ +1) allow the space group to be either $P b n 2_{1}$ (nonstandard setting of Pna2 ${ }_{1}$, No. 33) or Pbnm (nonstandard setting of Pnma, No. 62). The structure was solved and refined in $P b n 2_{1}$ (equivalent positions x, $y, z ;-x,-y, 0 \cdot 5+z ; 0 \cdot 5+x, 0 \cdot 5-y, 0 \cdot 5+z ; 0 \cdot 5-$ $x, 0 \cdot 5+y, z$). The coordinates of the Mo atom were derived from the three-dimensional Patterson function. The Mo z coordinate was set at 0.25 to define the origin and with the Mo x coordinate also close to 0.25 , the first heavy-atom-phased electron-density distribution was complicated somewhat by it having pseudo mm symmetry. By careful peak selection and subsequent rounds of structure-factor and differenceFourier calculations, all non-H atoms were located unambiguously. Refinement was by full-matrix leastsquares calculations, initially with isotropic and then with anisotropic thermal parameters. At an intermediate stage in the refinement, difference maps showed maxima in positions consistent with the expected locations of the H atoms; in the final © 1990 International Union of Crystallography

Table 1. Fractional coordinates and mean isotropic thermal parameters

$U_{\text {eq }}=0.33\left(U_{11}+U_{22}+U_{33}\right)$.				
	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
Mo	0.24349 (4)	0.15708 (2)	0.25*	0.042 (1)
Cl	0.3209 (3)	0.0276 (1)	0.0994 (1)	0.099 (1)
O(1)	-0.0373 (6)	0.1535 (3)	0.1495 (3)	0.082 (3)
$O(2)$	0.3679 (6)	0.2892 (3)	0.1355 (3)	0.082 (3)
C(1)	0.0623 (7)	0.1565 (4)	0.1894 (3)	0.054 (3)
C(2)	$0 \cdot 3210$ (7)	$0 \cdot 2424$ (4)	0.1800 (3)	0.053 (3)
C(3)	$0 \cdot 2984$ (7)	0.0829 (3)	0.1791 (3)	0.049 (3)
$\mathrm{N}(11)$	0.1537 (4)	0.2582 (2)	0.3271 (2)	0.043 (2)
$\mathrm{N}(12)$	0.1773 (4)	0.2524 (2)	0.4024 (2)	0.039 (2)
C(13)	0.1238 (6)	0.3201 (3)	0.4376 (3)	0.045 (3)
C(14)	0.0616 (6)	0.3718 (3)	0.3843 (3)	0.049 (3)
C(15)	0.0823 (6)	0.3318 (3)	0.3165 (3)	0.051 (3)
C(16)	0.1326 (8)	0.3334 (4)	0.5216 (4)	0.071 (4)
C(17)	-0.0131 (8)	0.4556 (3)	0.3956 (4)	0.080 (5)
C(18)	0.0343 (8)	0.3600 (4)	0.2399 (4)	0.082 (5)
$\mathrm{N}(21)$	0.4332 (5)	0.1654 (3)	0.3274 (3)	0.049 (3)
$\mathrm{N}(22)$	0.4118 (4)	0.1711 (2)	0.4035 (3)	0.056 (2)
C(23)	0.5426 (6)	0.1725 (3)	0.4388 (3)	0.050 (3)
C(24)	0.6475 (6)	0.1694 (3)	0.3850 (4)	0.058 (3)
C(25)	0.5769 (6)	0.1636 (3)	0.3169 (4)	0.059 (3)
C (26)	0.5561 (8)	0.1785 (4)	0.5221 (4)	0.080 (5)
$\mathrm{C}(27)$	0.8125 (7)	0.1683 (5)	0.3984 (6)	0.095 (6)
C(28)	0.6411 (7)	0.1567 (5)	0.2388 (5)	0.095 (5)
N(31)	0.1594 (4)	0.0728 (2)	0.3407 (3)	0.046 (2)
N(32)	0.1736 (5)	0.0943 (2)	0.4142 (2)	0.042 (2)
C(33)	$0 \cdot 1128$ (5)	0.0349 (3)	0.4586 (3)	0.050 (3)
C(34)	0.0561 (6)	-0.0260 (3)	0.4124 (4)	0.055 (3)
$\mathrm{C}(35)$	0.0877 (5)	-0.0014 (3)	0.3397 (3)	0.052 (3)
C(36)	0.1095 (8)	0.0416 (4)	0.5415 (4)	0.079 (4)
C(37)	-0.0248 (9)	-0.1049 (4)	0.4359 (5)	0.086 (5)
C(38)	0.0510 (8)	-0.0451 (4)	0.2682 (4)	0.083 (5)
B	0.2580 (6)	0.1755 (3)	0.4359 (3)	0.042 (3)

*The z coordinate of Mo was fixed at 0.25 to define the origin.
rounds of calculations the H atoms were positioned on geometrical grounds (B-H $1.08, \mathrm{C}-\mathrm{H} 0.95 \AA$) and included (as riding atoms) in the structure-factor calculations. The final cycle of refinement included 370 variable parameters, $R=0.028, w R=0.031, w=$ $1 /\left[\sigma^{2}\left(F_{o}\right)+0.003\left(F_{o}\right)^{2}\right]$. Max. shift/e.s.d. $=0.07$; density in final difference map +0.56 to $-0.33 \mathrm{e} \AA^{-3}$ adjacent to Mo atoms; no chemically significant features. Space group $P b n 2_{1}$ is polar and refinement with the direction of the polar axis reversed, converged with higher R values ($R=0.035, w R=0.040$). Scattering factors and anomalous-dispersion corrections were taken from International Tables for X-ray Crystallography (1974). All calculations used the SHELX program system (Sheldrick, 1976). Atomic coordinates and details of molecular geometry are given in Tables 1 and 2 respectively.* Fig. 1, prepared using ORTEPII (Johnson, 1976), shows the molecule (IV) and our numbering scheme.

Discussion. Our analysis confirms that complex (IV) has the anticipated octahedral geometry about molybdenum. There was no evidence (from electron-

[^1]Table 2. Molecular dimensions (\AA and ${ }^{\circ}$) for $\mathrm{HB}\left(\mathrm{Me}_{3} \mathrm{pz}\right)_{3} \mathrm{Mo}(\mathrm{CO})_{2}(\mathrm{CCl})$

Mo-C(1) 1	1.982 (6)	$\mathrm{N}(21)-\mathrm{N}(22)$	1.369 (6)
$\mathrm{Mo}-\mathrm{C}(2) \quad 1$	$1 \cdot 974$ (6)	$\mathrm{N}(21)-\mathrm{C}(25)$	1.333 (6)
$\mathrm{Mo}-\mathrm{C}(3) \quad 1.78$	1.798 (5)	$\mathrm{N}(22)-\mathrm{C}(23)$	1.354 (6)
$\mathrm{Mo}-\mathrm{N}(11) \quad 2$	2.268 (4)	$\mathrm{C}(23)-\mathrm{C}(24)$	1.358 (9)
$\mathrm{Mo}-\mathrm{N}(21) \quad 2$	2.224 (5)	$\mathrm{C}(23)-\mathrm{C}(26)$	1.490 (8)
$\mathrm{Mo}-\mathrm{N}(31) \quad 2$	2.234 (4)	$\mathrm{C}(24)-\mathrm{C}(25)$	1.377 (9)
$\mathrm{C}(1)-\mathrm{O}(1) \quad 1$	1.158 (7)	$\mathrm{C}(24)-\mathrm{C}(27)$	1.533 (8)
$\mathrm{C}(2)-\mathrm{O}(2) \quad 1$.	1.168 (7)	$\mathrm{C}(25)-\mathrm{C}(28)$	1.512 (9)
$\mathrm{C}(3)-\mathrm{Cl} \quad 1$	1.680 (6)	$\mathrm{N}(31) \mathrm{N}(32)$	1.357 (6)
$\mathrm{B}-\mathrm{N}(12) \quad 1$	1.549 (6)	$\mathrm{N}(31)-\mathrm{C}(35)$	1.351 (6)
$\mathrm{B}-\mathrm{N}(22) \quad 1$	1.527 (7)	$\mathrm{N}(32)-\mathrm{C}(33)$	1.351 (6)
$\mathrm{B}-\mathrm{N}(32) \quad .1$	1.553 (7)	$\mathrm{C}(33)-\mathrm{C}(34)$	1.372 (8)
$\mathrm{N}(11)-\mathrm{N}(12) \cdot 1$	1.359 (5)	$\mathrm{C}(33)-\mathrm{C}(36)$	1.478 (8)
$\mathrm{N}(11)-\mathrm{C}(19) \quad 1$	1.354 (6)	$\mathrm{C}(34)-\mathrm{C}(35)$	$1 \cdot 382$ (8)
$\mathrm{N}(12)-\mathrm{C}(13) \quad 1$	1.338 (6)	$\mathrm{C}(34)-\mathrm{C}(37)$	1.516 (7)
$\mathrm{C}(13)-\mathrm{C}(14) \quad 1$	1.377 (8)	$\mathrm{C}(35)-\mathrm{C}(38)$	1.487 (8)
$\mathrm{C}(13)-\mathrm{C}(16) \quad 1$	1.511 (7)		
$\mathrm{C}(14)-\mathrm{C}(15) \quad 1$	1.376 (8)		
$\mathrm{C}(14)-\mathrm{C}(17) \quad 1$	1.512 (6)		
$\mathrm{C}(15)-\mathrm{C}(18) \quad 1$.	1.500 (8)		
$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(2)$	$87 \cdot 9$ (3)	$\mathrm{Mo}-\mathrm{N}(21)-\mathrm{N}(22)$	$120 \cdot 2$ (3)
$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(3)$	81.4 (3)	$\mathrm{Mo}-\mathrm{N}(21)-\mathrm{C}(25)$	133.4 (4)
$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{N}(11)$	91.5 (2)	$\mathrm{N}(22)-\mathrm{N}(21)-\mathrm{C}(25)$) $\quad 1064$ (5)
$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{N}(21)$	173.8 (2)	$\mathrm{N}(21)-\mathrm{N}(22)-\mathrm{C}(23)$) 109.4 (4)
$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{N}(31)$	95.7 (2)	$\mathrm{N}(21)-\mathrm{N}(22)-\mathrm{B}$	120.5 (4)
$\mathrm{C}(2)-\mathrm{Mo}-\mathrm{C}(3)$	84.7 (3)	$\mathrm{C}(23)-\mathrm{N}(22)-\mathrm{B}$	130.1 (5)
$\mathrm{C}(2)-\mathrm{Mo}-\mathrm{N}(11)$	91.4 (2)	$\mathrm{N}(22)-\mathrm{C}(23)-\mathrm{C}(24)$) 107.6 (5)
$\mathrm{C}(2)-\mathrm{Mo}-\mathrm{N}(21)$	$93 \cdot 9$ (2)	$\mathrm{N}(22)-\mathrm{C}(23)-\mathrm{C}(26)$) 123.4 (5)
$\mathrm{C}(2)-\mathrm{Mo}-\mathrm{N}(31)$	$172 \cdot 7$ (2)	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(26)$	130.0 (4)
$\mathrm{C}(3)-\mathrm{Mo}-\mathrm{N}(11)$	$172 \cdot 1$ (2)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	106.7 (4)
$\mathrm{C}(3)-\mathrm{Mo}-\mathrm{N}(21)$	104.7 (2)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(27)$	126.3 (6)
$\mathrm{C}(3)-\mathrm{Mo}-\mathrm{N}(31)$	102.1 (2)	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(27)$	126.9 (9)
$\mathrm{N}(11)-\mathrm{Mo}-\mathrm{N}(21)$	$82 \cdot 4$ (2)	$\mathrm{N}(21)-\mathrm{C}(25)-\mathrm{C}(24)$	11000(5)
$\mathrm{N}(11)-\mathrm{Mo}-\mathrm{N}(31)$	82.1 (1)	$\mathrm{N}(21)-\mathrm{C}(25)-\mathrm{C}(28)$	-121.1 (9)
$\mathrm{N}(21)-\mathrm{Mo}-\mathrm{N}(31)$	81.9 (2)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(28)$	129.0 (5)
Mo-C(1)-O(1)	174.7 (5)	$\mathrm{Mo}-\mathrm{N}(31)-\mathrm{N}(32)$	120.7 (3)
$\mathrm{Mo}-\mathrm{C}(2)-\mathrm{O}(2)$	$176 \cdot 0$ (5)	$\mathrm{Mo}-\mathrm{N}(31)-\mathrm{C}(35)$	133.00 (4)
$\mathrm{Mo}-\mathrm{C}(3)-\mathrm{Cl}$	165.7 (4)	$\mathrm{N}(32)-\mathrm{N}(31)-\mathrm{C}(35)$) $106 \cdot 2(4)$
$\mathrm{Mo}-\mathrm{N}(11)-\mathrm{N}(12)$	119.3 (3)	$\mathrm{N}(31)-\mathrm{N}(32)-\mathrm{C}(33)$) $110 \cdot 2(4)$
$\mathrm{Mo}-\mathrm{N}(11)-\mathrm{C}(15)$	1348 (4)	$\mathrm{N}(31)-\mathrm{N}(32)-\mathrm{B}$	119.7 (4)
$\mathrm{N}(12)-\mathrm{N}(11)-\mathrm{C}(15)$) 105.8 (4)	$\mathrm{C}(33)-\mathrm{N}(32)-\mathrm{B}$	130.0 (4)
$\mathrm{N}(11)-\mathrm{N}(12)-\mathrm{C}(13)$) $110 \cdot 3$ (4)	$\mathrm{N}(32)-\mathrm{C}(33)-\mathrm{C}(34)$) 107.6 (5)
$\mathrm{N}(11)-\mathrm{N}(12)-\mathrm{B}$	120.6 (4)	$\mathrm{N}(32)-\mathrm{C}(33)-\mathrm{C}(36)$) $\quad 122 \cdot 7$ (5)
$\mathrm{C}(13)-\mathrm{N}(12)-\mathrm{B}$	129.1 (4)	$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(36)$	129.7 (5)
$\mathrm{N}(12)-\mathrm{C}(13)-\mathrm{C}(14)$) 108.1 (4)	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	106.2 (4)
$\mathrm{N}(12)-\mathrm{C}(13)-\mathrm{C}(16)$) $123 \cdot 7$ (5)	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(37)$	127.3 (6)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(16)$	128.2 (5)	$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{C}(37)$	126.5 (6)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$) $105 \cdot 6$ (4)	$\mathrm{N}(31)-\mathrm{C}(35)-\mathrm{C}(34)$) $120.7(5)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(17)$	128.5 (5)	$\mathrm{N}(31)-\mathrm{C}(35)-\mathrm{C}(38)$) $122.0(5)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(17)$	12599 (5)	$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(38)$	128.3 (5)
$\mathrm{N}(11)-\mathrm{C}(15)-\mathrm{C}(14)$) 110.1 (5)	$\mathrm{N}(12) \mathrm{B}-\mathrm{N}(22)$	109.5 (4)
$\mathrm{N}(11)-\mathrm{C}(15)-\mathrm{C}(18)$	121.8(5)	$\mathrm{N}(12) \mathrm{B}-\mathrm{N}(32)$	108.8 (4)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(18)$) 128.1 (5)	$\mathrm{N}(22)-\mathrm{B}-\mathrm{N}(32)$	$109 \cdot 2$ (4)

Fig. 1. A view of molecule (IV). Ellipsoids are at the 50% probability level except for \mathbf{H} atoms (spheres of arbitrary size).
density peak heights or thermal parameters) for any mutual disorder of $\mathrm{C}-\mathrm{Cl}$ or $\mathrm{C}-\mathrm{O}$ groups. The bond lengths and bond angles within the hydrotris-(3,4,5-trimethyl-1-pyrazolyl)borate ligand resemble closely those of the hydrotris(3,5-dimethyl-1pyrazolyl)borate ligand in complex (II) and show no unexpected features. The arrangement of the two carbonyl ligands [mean Mo-C 1.978 (5), mean C-O 1.163(7) \AA, mean Mo-C-O $175 \cdot 3$ (5), $\left.\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(2) 87.9(3)^{\circ}\right]$ is very similar to that found in complex (II) [mean Mo-C 1.992 (5), mean C-O $1 \cdot 150$ (6) \AA, mean $\mathrm{Mo}-\mathrm{C}-\mathrm{O} \quad 177 \cdot 7$ (5), $\mathrm{C}(1)-\mathrm{Mo}-$ (2) $89 \cdot 0$ (2) ${ }^{\circ}$].

The chloromethylidyne ligand is bonded to molybdenum with $\mathrm{Mo}-\mathrm{C}(3) 1.798$ (5) and $\mathrm{C}(3)-\mathrm{Cl}$ $1-680$ (6) \AA. The molybdenum-C(methylidyne) separation is thus essentially identical to that in the η-organothiomethylidyne complex (II). The much longer Mo-C(methylidyne) bond reported for (I) may be an artefact of some residual disordering of carbonyl and chloromethylidyne ligands in the crystal of that complex. The $\mathrm{Cl}-\mathrm{C}$ (methylidyne) separation in (IV), $1 \cdot 680$ (6) \AA, is close to the value ($1.69 \AA$) calculated from the sum of the covalent radii of $s p$-carbon and chlorine (Cotton \& Wilkinson, 1976). Whereas the η^{1}-organothiomethylidyne ligands in complexes (II) and (III) bond to the metal in an essentially linear fashion [$M-\mathrm{C}-\mathrm{S} 179.5$ (2) and $174 \cdot 2(6)^{\circ}$ respectively] the $\mathrm{Mo}-\mathrm{C}(3)-\mathrm{Cl}$ fragment in (IV) is distinctly angular [165.7 (4) ${ }^{\circ}$; this nonlinearity probably arises from the effects of crystal packing forces. Thus, intermolecular distance calculations show that with the non-linear model, the Cl atom makes two contacts with neighbouring molecules $\mathrm{Cl} \cdots \mathrm{C}(18)$ (at $\left.\frac{1}{2}-x,-\frac{1}{2}+y, z\right) 3.887$ (6) and $\mathrm{Cl} \cdots \mathrm{C}(26)\left(\right.$ at $\left.1-x,-y,-\frac{1}{2}+z\right) 3 \cdot 728$ (6) \AA; these
distances are in accord with the van der Waals radii sum for Cl and C (methyl) of approximately $3.8 \AA$. However, when the Cl atom is positioned geometrically so that the $\mathrm{Mo}-\mathrm{C}-\mathrm{Cl}$ bond is linear, the resulting $\mathrm{Cl} \cdots \mathrm{C}(18)$ and $\mathrm{Cl} \cdots \mathrm{C}(26)$ intermolecular contacts are reduced to 3.493 (6) and $3 \cdot 501$ (6) \AA respectively, significantly less than the sum of the van der Waals radii.

The chloromethylidyne ligand in (IV) exerts a marked trans effect (the Mo-N bond trans to the ligand being ca $0.039 \AA$ longer than those trans to CO) but the effect is less pronounced than that in (II) where the trans bond-lengthening is of the order of $0.074 \AA$.

In the crystal of (IV) the molecules are separated by normal van der Waals distances and show no unusual intermolecular contacts.

We thank the NSERC Canada for grants in Aid of Research.

References

Cotton, F. A. \& Wilkinson, G. (1976). Basic Inorganic Chemistry, p. 87. New York: John Wiley.
Desmond, T., Lalor, F. J., Ferguson, G. \& Parvez, M. (1983). J. Chem. Soc. Chem. Commun. pp. 457-459.

Desmond, T., Lalor, F. J., Ferguson, G. \& Parvez, M. (1984). J. Chem. Soc. Chem. Commun. pp. 75-77.

Greaves, W. W., Angelici, R. J., Helland, B. J., Klima, R. \& Jacobson, R. A. (1979). J. Am. Chem. Soc. 107, 7618-7620.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1990). C46, 61-64

Structure of Caesium Picrate

By A. Schouten and J. A. Kanters
Laboratorium voor Kristal- en Structuurchemie, Rijksuniversiteit Utrecht, Transitorium 3, Padualaan 8, 3584 CH Utrecht, The Netherlands

and N. S. Poonia
Institute for Research and Chemical Services, Vishnupuri, Indore 452001, India

(Received 15 March 1989; accepted 9 May 1989)

$4, D_{x}=2.48 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.71073 \AA, \mu=$ $38.3 \mathrm{~cm}^{-1}, F(000)=680, T=295 \mathrm{~K}, R=0.025$ for 1831 observed reflections with $I>2 \cdot 5 \sigma(I)$. In the
© 1990 International Union of Crystallography

[^0]: * E-mail address: STCH8002@IRUCCVAX.
 \dagger E-mail address: CHMFERG@UOGUELPH.

[^1]: * Lists of structure factors, anisotropic thermal parameters and H -atom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52196 (14 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

